Distribution and spread of pyrethroid and DDT resistance among theAnopheles gambiae complex in Tanzania

Citation: 
B. KABULA, P. TUNGU, R. MALIMA, M. ROWLAND, J. MINJA, R. WILILO, M. RAMSAN, P. D. MCELROY, J. KAFUKO, M. KULKARNI, N. PROTOPOPOFF, S. MAGESA, F. MOSHA and W. KISINZA
Publication year: 
2013

The development of insecticide resistance is a threat to the control of malaria in Africa. We report the findings of a national survey carried out in Tanzania in 2011 to monitor the susceptibility of malaria vectors to pyrethroid, organophosphate, carbamate and DDT insecticides, and compare these findings with those identified in 2004 and 2010. Standard World Health Organization (WHO) methods were used to detect knock-down and mortality rates in wild female Anopheles gambiae s.l. (Diptera: Culicidae) collected from 14 sentinel districts. Diagnostic doses of the pyrethroids deltamethrin, lambdacyhalothrin and permethrin, the carbamate propoxur, the organophosphate fenitrothion and the organochlorine DDT were used. Anopheles gambiae s.l. was resistant to permethrin in Muleba, where a mortality rate of 11% [95% confidence interval (CI) 6–19%] was recorded, Muheza (mortality rate of 75%, 95% CI 66–83%), Moshi and Arumeru (mortality rates of 74% in both). Similarly, resistance was reported to lambdacyhalothrin in Muleba, Muheza, Moshi and Arumeru (mortality rates of 31–82%), and to deltamethrin in Muleba, Moshi and Muheza (mortality rates of 28–75%). Resistance to DDT was reported in Muleba. No resistance to the carbamate propoxur or the organophosphate fenitrothion was observed. Anopheles gambiae s.l. is becoming resistant to pyrethoids and DDT in several parts of Tanzania. This has coincided with the scaling up of vector control measures. Resistance may impair the effectiveness of these interventions and therefore demands close monitoring and the adoption of a resistance management strategy.