Knockdown Resistance, rdl Alleles, and the Annual Entomological Inoculation Rate of Wild Mosquito Populations from Lower Moshi, Northern Tanzania

Citation: 
Aneth M Mahande, Isabelle Dusfour, Jonathan R Matias, and Eliningaya J Kweka
Publication year: 
2012

Aim: Understanding vector behavioral response due to ecological factors is important in the control of disease vectors. This study was conducted to determine the knockdown resistance (kdr) alleles, dieldrin resistance alleles, and entomological inoculation rates (EIRs) of malaria vectors in lower Moshi irrigation schemes for the mitigation of disease transmission.

Materials and Methods: The study was longitudinal design conducted for 14 months. Mosquitoes were collected fortnightly by using a CDC miniature light trap in 20 houses. Mosquitoes were identified morphologically in the field, of which 10% of this population was identified to species level by using molecular techniques. Samples from this study population were taken for kdr and resistance to dieldrin (rdl) genes detection.

Results: A total of 6220 mosquitoes were collected by using a light trap, of which 86.0% (n=5350) were Anopheles gambiae sensu lato and 14.0% (n=870) were Culex quinquefasciatus. Ten percent of the An. gambiae s.l. (n=535) collected were taken for species identification, of which 99.8% (n=534) were identified as An. arabiensis while 0.2% (n=1) were An. gambiae sensu stricto. Of the selected mosquitoes, 3.5% (n=19) were sporozoite positive. None of the mosquitoes tested had the kdr gene. The rdl resistant allele was detected at a frequency of 0.48 throughout the year. EIR was determined to be 0.54 ib/trap/year.

Conclusion: The findings of this study suggest that the homozygous and the heterozygous resistance present in rdl genes demonstrated the effect of pesticide residues on resistance selection pressure in mosquitoes. A better insecticide usage protocol needs to be developed for farmers to use in order to avoid excessive use of pesticides.