Prevalence of reverse transcriptase and protease mutations associated with antiretroviral drug resistance among drug-naïve HIV-1 infected pregnant women in Kagera and Kilimanjaro regions, Tanzania.

Citation: 
Nyombi BM, Holm-Hansen C, Kristiansen KI, Bjune G, Müller F. AIDS Res Ther. 2008 Jun 21;5:13
Publication year: 
2008

Access to antiretroviral drugs for HIV-1 infection has increased in sub-Saharan Africa (SSA) during the past few years. Mutations in the HIV-1 genome are often associated with treatment failure as indicated by viral replication and elevated levels of virus in the blood. Mutations conferring resistance to antiretroviral drugs are based on comparing gene sequences with corresponding consensus sequences of HIV-1 subtype B that represents only 10% of the AIDS pandemic. The HIV pandemic in SSA is characterized by high viral genetic diversity. Before antiretroviral drugs become more widely available, it is important to characterize baseline naturally occurring genetic mutations and polymorphisms associated with antiretroviral drug resistance among circulating HIV-1 subtypes. The prevalence of mutations associated with antiretroviral drug resistance in protease (PR) and reverse transcriptase (RT) regions among antiretroviral treatment-naïve HIV-1 infected pregnant women was investigated in Bukoba (Kagera) and Moshi (Kilimanjaro) municipalities, Tanzania, between September and December 2005. The HIV-1 pol gene was amplified using primers recognizing conserved viral sequences and sequenced employing BigDye chemistry from 100 HIV-1 seropositive treatment-naïve pregnant women and 61 HIV-1 seropositive women who had received a single dose of Nevirapine (sdNVP). Positions 1-350 of the RT and 1-99 of the PR genes were analyzed for mutations based on the Stanford University HIV Drug Resistance Database. HIV-1 subtypes A, C, D, CRF10_CD and Unique Recombinant Forms (URF) were detected. Primary mutations associated with NRTI and NNRTI resistance were detected among 3% and 4% of treatment-naïve strains, respectively. Primary mutations associated with NRTI and NNRTI resistance were detected in 1.6% and 11.5% of women who had received sdNVP, respectively. None of the primary mutations associated with PI resistance was found. Polymorphisms detected in RT and PR sequences were mainly mutations that are found in the consensus sequences of non-B subtypes. Based on the WHO HIV Drug Resistance Research Network Threshold of less than 5%, the baseline prevalence of primary mutations among treatment-naïve HIV-1 infected pregnant women in Kagera and Kilimanjaro regions was low. The significance of HIV-1 subtype B polymorphic positions with respect to antiretroviral resistance identified among the prevalent HIV-1 subtypes is unknown. More studies addressing the correlation between polymorphic mutations, antiretroviral resistance and clinical outcome are warranted in regions where non-B subtypes are prevalent.