

Specific issues

- Asymptomatic carriage of bacteria in the nasopharyngeal
- B-cell dysfunction in association with the primary T-cell dysfunction
- In mature/ damaged immunity

Dynamics of nasopharyngeal bacterial colonisation in HIV-exposed young infants in Tanzania

G. D. Kinabo¹, A. van der Ven^{2,6}, L. J. Msuya¹, A. M. Shayo¹, W. Schimana¹, A. Ndaro³, H. A. G. H. van Asten^{4,6}, W. M. V. Dolmans^{4,6}, A. Warris^{5,6} and P. W. M. Hermans^{5,6,7}

- Staphylococcus aureus 66%,
- Streptococcus pneumoniae56%,
- Moraxella catarrhalis 50%.
- Haemophilus influenzae. 14%
- Cocolonisation of S. pneumoniae with H. influenzae or M. catarrhalis was mostly noticed in HIV infected infants.

Invasive bacterial and fungal infections among hospitalized HIV-infected and HIV-uninfected children and infants in northern Tanzania

John A. Crump^{1,2,3,4}, Habib O. Ramadhani^{3,4}, Anne B. Morrissey¹, Levina J. Msuya^{3,4}, Lan-Yan Yang^{5,6}, Shein-Chung Chow⁶, Susan C. Morpeth¹, Hugh Reyburn⁷, Boniface N. Njau³, Andrea V. Shaw¹, Helmut C. Diefenthal^{3,4}, John A. Bartlett^{1,2,3,4}, John F. Shao^{3,4}, Werner Schimana³, Coleen K. Cunningham⁸ and Grace D. Kinabo^{3,4}

- HIV disease10.7%
- Malaria 60.4%.
- Positive blood cultures 5.8%
- 25.9% Salmonella enterica (including 6 Salmonella Typhi)
- 22.2% Streptococcus pneumoniae.
- HIV infection was associated with S. pneumoniae (odds ratio 25.7, 95% CI 2.8, 234.0)

Differences between Adults and Children

- OI in children often reflects primary infection rather than reactivation
- Ol occurs at a time when infant's immune system is immature
- Different disease manifestations
 - e.g. children more likely to have non-pulmonic and disseminated TB
- Classical features of infection may not be present

Difficulty of Diagnosing OI in Children

- Inability to describe symptoms
- Antibody-based tests confounded by maternal transfer of antibody
- Sputum difficult to obtain without invasive procedures

Serious Recurrent Bacterial Infections:

- Most common infection in pre-HAART
- bacterial pneumonia is often a presumptive diagnosis
- Bacteremia more common in HIV-infected children with pneumonia
- Gram-negative bacteremia more common in children with advanced disease

- Clinical presentation dependent on type of bacterial infection (eg, bacteremia, sepsis, vasculitis, septic arthritis, pneumonia, meningitis, sinusitis)
- Presentation similar to that of HIV-uninfected children
- They lack classical signs, symptoms, and laboratory tests.
- acute pneumonia have recurrent episodes.

Serious Recurrent Bacterial Infections: Prevention

- Trimethoprim sulfamethoxazole (TMP-SMX)
- Up-to-date immunization

Serious Recurrent Bacterial Infections: Treatment

- Empirically and promptly until cultures are available.
- Prevalence of resistance of common drugs
- Azithromycin for hospitalized patients with pneumonia
- Clindamycin or Vancomycin if MRSA is suspected

Serious Recurrent Bacterial Infections: Treatment Failure

- Consider bacterial resistance if treatment failure occurs
- Consider nonbacterial cause such as TB, PCP, meningitis (Cryptococcus or TB)
- Look for catheter-related infections
- Occult abscess

The End

Thank you for being attentive

