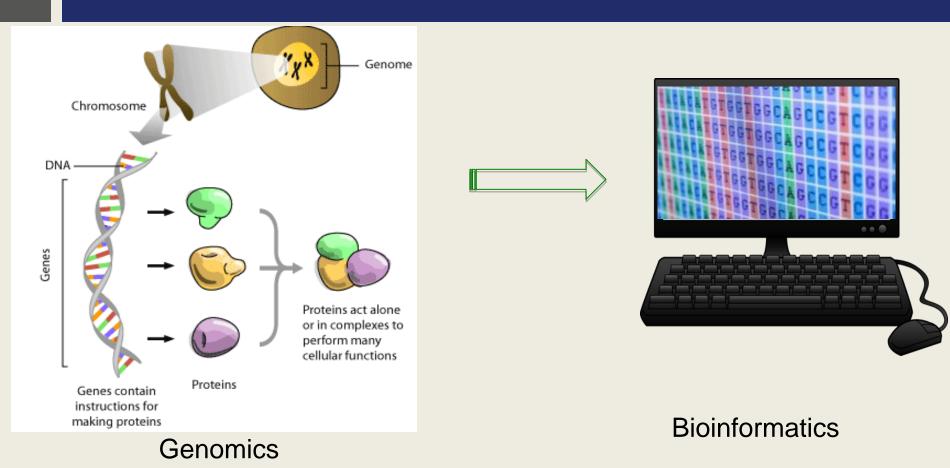
FUTURE PERSPECTIVES

Role of Bioinformatics in Infectious Diseases

Tolbert Sonda: PhD candidate


Outline

- Introductory bioinformatics
- Bioinformatics unit at KCMC/KCRI
- Bioinformatics as tool for resistance determination

Bioinformatics (1)

A study of genes (DNA) and their functions

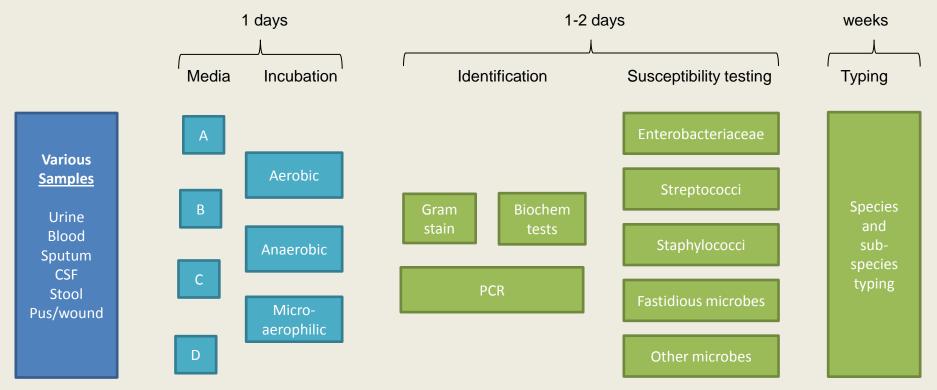
A computer analysis of biological data (DNA) i.e. decoding information stored in the genetic code

Double helix DNA

Nobel Prize winners, 1962

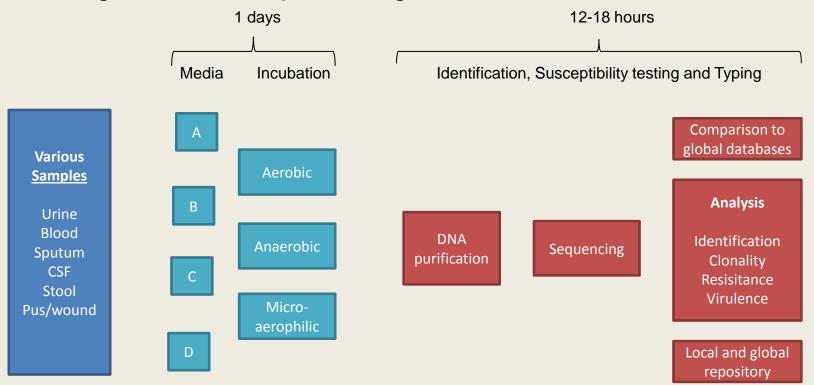
Wilkins Steinbeck Kendrew Perutz Crick Watson

Bioinformatics (2): example data file


>NODE_1_length_4413_cov_26.455925

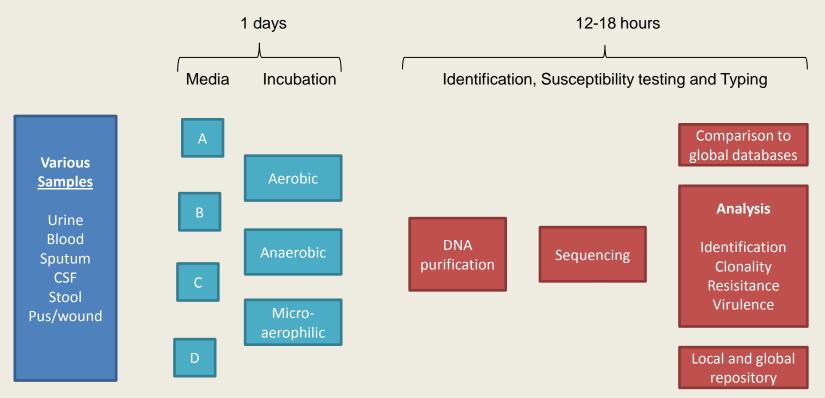
TTATCGGGGCGAAGTGCCTCCGGTAAAAATACCAGAACAAGAGCCATTACAGGCATTGAC GGTGATATCCGAATCAACAAAGCATTATGGATGATTGCTGAACAGTTCAGGGAGTGGAAG TCATGATAATATAAGTAAAGCCCCCGAAAAATTTTTCGGGGGCTTTACTTATATTATCATCC TGCGGCATTGCTGTGTCGTCTGATATGCCTCAATTTCATCAACTGGCTTTTCGGTAGTCT GTAAATATTGTGCCCGCGAAAAATGGTCTGGCAGGAGGCTGCGCAGTTACCGGATATATA TAAGATGGGGTCCCGCTTTGCGGGGCTTCGGCCAGTCAGCATTATCACTCATATGATATT TTTGTGTGTGGCCTTCCATGCCGCTGTCGCGGCATAACCGGTATTTGACAATGTATACAA TATTAATTGTTCTGCACACTGTTAATTTGGGAAAGTGATTTCTTCGTGGTCGGAACCCGG ATGCCTTTACTGCTCTTTATCCAGGTATAAATCCGGTAAACCTCTGATGCGTAGGCAAGA CATCTCTGGTTCTGGCGTTCGGTCTTCCTGAATCCGGCATTGTATGCACCAACGGCCTCC CAGGAGACGCCCCATTTTTTAAAGGCTATTGCCAGATAATAAGCACCGGTATAAATGTTC ATGCAGGGATCTGTTGTCAGATGTTCCGGCTTAATTCCATAGCGGGCCAGTTCGTTAAAA TGCTGGGAATCTACCTGCATCAGTCCGCTGCCATATCCCGTTACCGGATTAATACCGATG GCATTAACCCGGTAACGGGATTCTTTCCATGATATCGCTCTCAGTAAATCCGGGTCTATT TTGTAATCCCGACCTGCAAGATCAAAGCAATCGGCGGCTTCGCAGATCCCATTTATAAAC ATCAGGCAGATTGCTAACATCCATTTTTTCATTTTTCCACCTCTGGTGACTTTATCCGTA AATAATTTAACCCACTCCACAAAAAAGGCTCAACAGGTTGGTGGTTCTCACCACCAAAAG CACCACACCCCACGCAAAAAACAAGTTTTTGCTGATTTGCTATTTGAATCATTAACTTATA TTTTAAATAATGTATTTTAATTTATTTTACATTATAAAAAGGATTCATTGGTGAATCGCA TATGATTCACCAATGAATTTAACGCAACTCATAGATGAATCAGTAATAATAAAAACAACGA GTTAAAGCGAATTGACTCTAGATTCAATTCGTGATGTGATTTGCTGCATGAATCGTAATT TTCGTAACTTGCGTCACGATTCGATTCATCGATGAATTGTCATTTTTTATATGTGAAATA

Bioinformatics (3)


Conventional microbiology

Credits to Henrik Hasman et al.

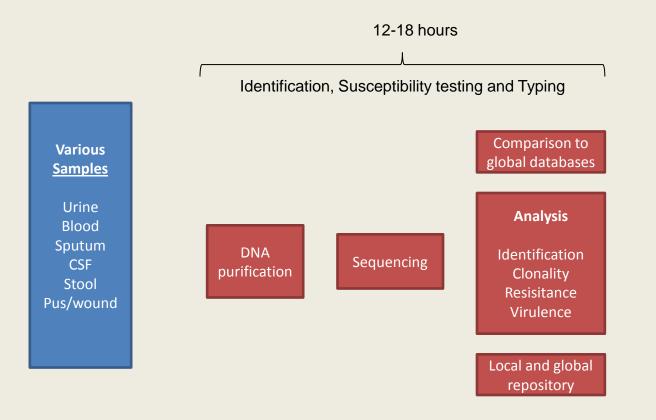
Whole genome sequencing



Credits to Henrik Hasman et al.

Bioinformatics (5)

Whole community sequencing

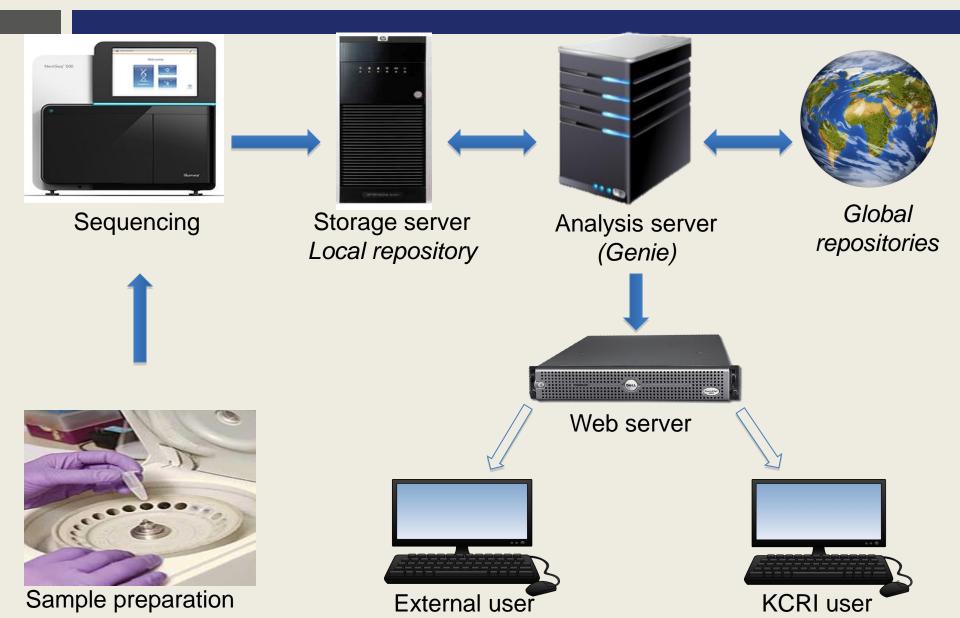


Credits to Henrik Hasman et al.

Bioinformatics (5)

Whole community sequencing

KCRI-DTU Genomics project



Objectives

- 1. To set up genomics/bioinfo units at KCMC/KCRI
- 2. To use the genomics/bioinfo tools for diagnosis
- 3. To share the genomics/bioinfo tools with others

Workflow infrastructure

The portal

Quick Links

OpenClinica

HighRif 2 OEBA WGS TanZamBo Muleba Haydom HR2 Test WGS Test Mul/TZB Test

Genie

Genie Homepage MLST PlasmidFinder KmerFinder pMLST SpeciesFinder ResFinder NDtree snpTree Assembler

Alfreeco

kcri applications portal

info sharing

home

data management

bioinformatics

contact

Bioinformatics Tools

The KCRI Bioinformatics Unit operates "Genie", an application server offering a range of applications for genomic analysis. The Genie server was originally configured by researchers at the Center for Biological Sequence Analysis of DTU Copenhagen. It will be further developed jointly by KCRI and DTU, in the context of their collaboration programme focused on microbial genomics.

Genie's homepage is here. It offers the following services:

Typing and Identification

- Multi-locus sequence typing (MLST)
- Plasmid Finder
- K-mer Finder
- Plasmid MLST (pMLST)
- Species Finder

Resistance determination

Resistance Finder (ResFinder)

Phylogeny analysis

- Nucleotide Difference (NDtree)
- Single Nucleotide Polymorphisms (snpTree)

Determining resistance

Submit

Clear fields

ResFinder 1.4 (Acquired antimicrobial resistance gene finder)

ResFinder identifies acquired antimicrobial resistance genes in total or partial sequenced isolates of bacteria.

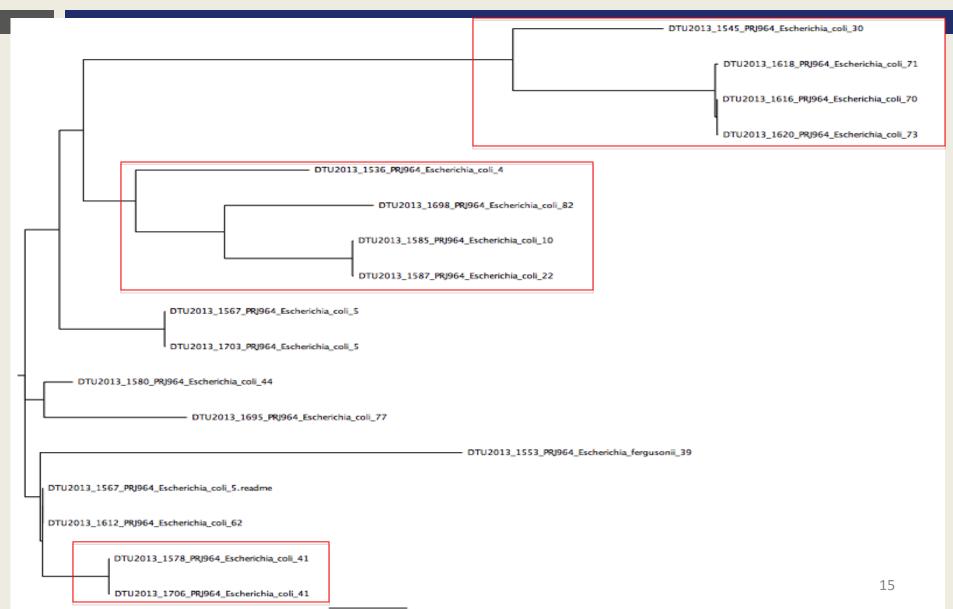
The input sequence must be in one-letter nucleotide code and the filename must not contain space. E.g. correct filename: "test_VTE Ha.fasta"

Test sequence NOTE: Currently ResFinder focuses on acquired genes and do therefore not find chromosomal mutations (NAL, FUS,

	Select files or folders
E Browse	Look In: 🛅 Assemblies 💉 📝 🞯 📴 🏥
Uploads	 DTU2013_1692_PRJ964_Gram_neg_rod_unknown_58.fr DTU2013_1692_PRJ964_Gram_neg_rod_unknown_58.re DTU2013_1693_PRJ964_Proteus_mirabilis_76.fna DTU2013_1693_PRJ964_Proteus_mirabilis_76.readme.tx
Total files: 0 (N/A).	File Name: Files of Type: Allowed files (.*)
Select Antimicrobial configuration Select multiple items, with Ctrl-Click (or C	OK Cancel
All	
Aminoglycoside	
Beta-lactamase	
Fluoroquinolone	
Fosfomycin Fusidic Acid	
Select threshold for %ID	
100 %	
100 %	\$
100 % Select type of your reads Assembled Genome/Contigs*	÷

Resistance results

ResFinder-1.3 Server - Results

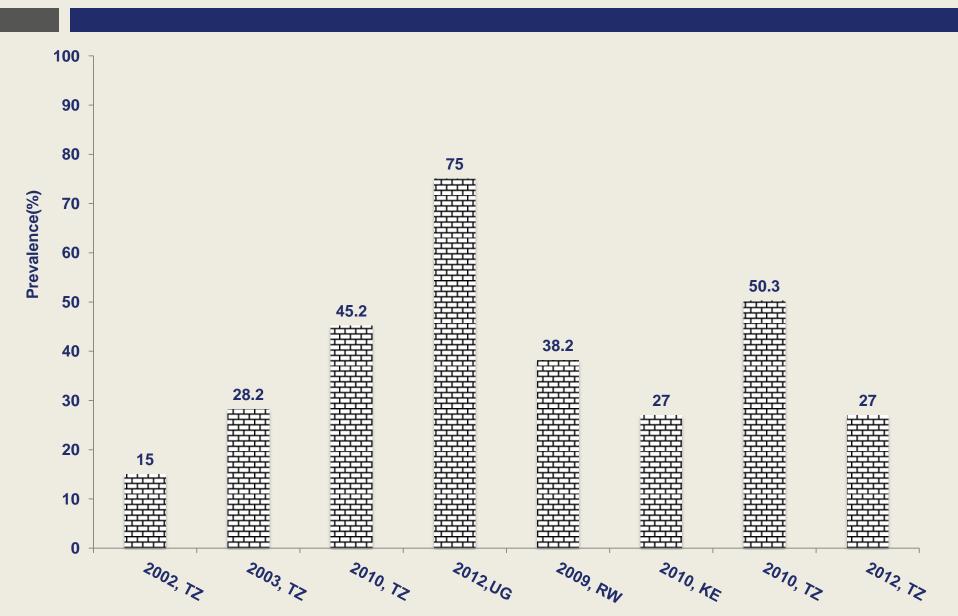

	Aminoglycoside						
Resistance gene	%Identity	HSP/Query length	Contig	Position in contig	Predicted phenotype	Accession number	
aac(6')- laa	100.00	438 / 438	NODE_46_length_597357_cov_13.450850	389085389522	Aminoglycoside resistance	NC_003197	
aadA1	100.00	792 / 792	NODE_136_length_15228_cov_8.325453	64047195	Aminoglycoside resistance	<u>JX185132</u>	
strA	100.00	804 / 804	NODE_136_length_15228_cov_8.325453	29523755	Aminoglycoside resistance Alternate name; aph(3")-lb	AF321551	
strB	100.00	837 / 837	NODE_136_length_15228_cov_8.325453	37554591	Aminoglycoside resistance Alternate name; aph(6)-Id	<u>M96392</u>	

1			Beta-lactam			
Resistance gene	%Identity	HSP/Query length	Contig	Position in contig	Predicted phenotype	Accession number
blaTEM-1	100.00	861/861	NODE_51_length_1988_cov_8.507042	6071467	Beta-lactam resistance Alternate name; RblaTEM-1	JE910132

in

Molecular relatedness

Determination of resistance due to ESBL-producing bacteria at KCMC


Introduction

• ESBL

- Enzymes that mediate resistance to extended-spectrum (third generation) cephalosporins (e.g., ceftazidime, cefotaxime, and ceftriaxone) by hydrolyzing βlactam ring <u>http://www.cdc.gov/hai/settings/lab/lab_esbl.html</u>
- Limited choice of drugs for treatment
- More health-care resources due to
 - Long hospitalisation time
 - Drug costs: 15 times more expensive
- Increased risk of clinical outcomes and death

Lit. on ESBL in east African hospitals KCR

5 KCRI Kilimanjaro Clinical Research Institute Academic Centre for Evidence Based Health Interventions An Institution of the Good Samaritan Foundation

Methods

Whole genome sequencing
 MiSeq system (Illumina®)
 Bioinfo analysis
 ResFinder

- Threshold set: 100% ID
- Minimum length of nucleotides: 60%

Overall ESBL burden: 54.2% Highest prevalent gene: blaOXA (30.1%)

Lowest prevalent gene: blaSHV 6.0%

Conclusion

• This highlights the need for

- \odot ESBL screening in our hospital
- Robust(one-in-all) diagnostics that can timely and accurately identify infectious disease agents

Genomics/bioinfo publications

Rapid Whole-Genome Sequencing for Detection and Characterization of Microorganisms Directly from Clivit

Rapid Whole-Genome Sequencing for Investigation of a Suspected Tuberculosic Whole-genome sequences of Chlamydia trachomatis

From clinical samples without culture ncing to establish relay for the relay for t Whole-genome sequencing to establish relapse or re-infection with Mycobacterium tuberculosis: a retrospective observational study

Josephine M Bryant, Simon R Harris, Julian Parkhill, Rodney Dawson, Andreas H Diacon, Paul van Helden, Alex Pym, Aziah A Mahayiddin, Charoen Chuchottaworn, Ian M Sanne, Cheryl Louw, Martin J Boeree, Michael Hoelscher, Timothy D McHugh, Anna L C Bateson, Robert D Hunt, Solomon Mwaigwisya, Laura Wright, Stephen H Gillespie, Stephen D Bentley Hise Parkhill, and Micholae

Acknowledgment

Collaborators